まず結論から言ってしまいますと、理由は、「月の大きさが地球の4分の1で、重さが約100分の1だから」ということになります。しかし、これではあまりにも簡単過ぎますので、せっかくですので計算してみることにしましょう。
なお、ここから先は、高校の物理で習う内容が含まれていますので、やや難しくなります。

まず必要になるのは、ニュートンの第2法則です。これは、「物体が受ける力は、物体の重さと加速度をかけたものになる」というものです。言葉で書くと難しそうですが、いま、力の大きさをF、重さをm、加速度をaとしますと、式としては簡単で、

F=m×a

となります。1キログラムの重さのものを、毎秒1メートルずつ加速する加速度で加速してやるための力は、1ニュートンといいます。

もう1つは、「万有引力の法則」です。これも言葉で書くと難しいのですが、「物体同士が受ける力は、互いの質量に比例し、距離の2乗に反比例する」というものです。これも式で書きますと、質量mと質量Mという、2つの物体が距離Rだけ離れていたとき、互いに働く引力の強さFは、

F=G×M×m÷R÷R

となります。
ここで出てきたGという数は、「万有引力定数」という、決まった数(定数)です。

さて、月の「重力」と私たちはよく言っていますが、これは、月と私たちの間に働く引力ということになります。私たちが地球の表面で、地球に引っ張られているように、月の表面にある物体も、月の引力を受けて引っ張られています。この引っ張られている力は万有引力にあたります。仮に、ある物体を月に持って行ったとして、そこに働く引力は、

月の引力=G×(月の質量)×(物体の質量)÷(月の半径)÷(月の半径)

となります。同じ物体を地球に持って行った場合、地球上での引力は、

地球の引力=G×(地球の質量)×(物体の質量)÷(地球の半径)÷(地球の半径)

さて、上で2つの式が出てきましたが、両者の比をとってみることにします。

  月の引力     G×(月の質量)×(物体の質量)÷(月の半径)÷(月の半径)
------------=------------------------------------------------------------
 地球の引力    G×(地球の質量)×(物体の質量)÷(地球の半径)÷(地球の半径)

式をみてみると、Gと「物体の質量」は、分母と分子で同じですから打ち消しあい、

  月の引力        (月の質量)÷(月の半径)÷(月の半径)
------------=------------------------------------------
 地球の引力    (地球の質量)÷(地球の半径)÷(地球の半径)

となります。さて、「理科年表」などの資料を見てみますと、月の質量は地球の0.0123倍となっています。また、地球の半径は6378キロメートル、月の半径は1738キロメートルとなっています。
これを、上の式にあてはめてみます。

  月の引力        0.0123÷1738÷1738
------------=-----------------------=0.16594...
 地球の引力         1÷6378÷6378

ほぼ、0.16倍ということになります。6分の1は0.1666….となりますので、大体、6分の1と考えてよい値です。

高校で習う物理の内容ですので、やや難しいかと思いますが、ぜひチャレンジしてみてください。また、「理科年表」を参考にして、他の惑星と比べてみるのも面白いと思います。