水素還元による月土壌からの水製造

July 17, 2001

渡辺隆行(東京工業大学),金森洋史(MASDA) 青木 滋(清水建設),吉田哲二(清水建設) 内藤 均(NAL),荻原裟千男(NAL) 中村嘉宏(法政大学)

1

Introduction

Background

On going Lunar Exploration Projects of Japan - SELENE, LUNAR-A Utilization of Lunar Environment and Resources - Solar Power, Lunar Soil Essential technologies for space development

- From Moon to Mars...

Purposes of this study

- 1. To discuss the possibility of water production
- 2. To seek the optimum reaction conditions
- 3. To Investigate the reaction mechanism of water production

Lunar soil simulant

♦ Experiments in the laboratory _____ Lunar Soil Simulant

*Lunar Soil Simulant is made by Shimizu Corporation, Japan.

Characteristics of Lunar Soil Simulant

component	Lunar Soil	Lunar Soil	Earth
	(Apollo14)	Simulant	(reference)
SiO ₂	48.10	50.28	60~70
Al_2O_3	17.40	16.32	-
Fe ₂ O ₃	0.00	4.42	10~12
FeO	10.40	8.7	4~5
Others	23.70	20.28	-
sum	99.60	100.00	-

◆ <u>Compositions [wt%]</u>

♦ Median diameter

 $70 \,\mu m$ (weight base)

*Lunar soil does not contain any Fe_2O_3 .

*Lunar soil simulant has almost same compositions of lunar soil.

Thermodynamic consideration

 $\begin{array}{l} Hydrogen \ Reduction \\ of \ Lunar \ Soil \ Simulant \end{array} \quad Minerals + H_2 \quad Metal + H_2O \end{array}$

•Free energy formation for hydrogen reduction

✓ Ferrous oxide and ferric oxide can be easily reduced by hydrogen.

Experimental apparatus

SEM analysis

at 1273 K

After Reductior at 1323 K

As reduction proceeds...

✓ Bright parts (ilmenite) have several holes.

 \checkmark At 1323 K, the pores were blocked by the melt of alkali contents.

Results of hydrogen reduction

Experimental Conditions

Simulant 40 g, 4 l/min, 1273 K, 404 kPa

Effect of reaction temperature ______on water production

Over 1273 K The pores were blocked by the melt of alkali contents.

Composition change during reduction

				[wt%]
component	Before	2 min	6 min	After
SiO ₂	50.90	51.13	51.30	51.10
Al_2O_3	16.00	16.11	16.22	15.96
TiO ₂	2.11	2.11	2.19	2.11
Fe	0.11	1.56	3.47	3.86
Fe ₂ O ₃	4.25	1.07	0.07	0.07
FeO	8.47	9.53	7.95	8.15

Hydrogen Reduction of Iron Oxide $Fe_2O_3 + H_2$ $2FeO + H_2O$ (1) $FeO + H_2$ $Fe + H_2O$ (2)Reaction Rate(1) >> (2)

Why water production by hydrogen reduction?

1. Reaction mechanism is simple.

> Just one step of reaction

> Technology readiness

2. Transportation from the earth costs low.

> Hydrogen is light

- 3. Process conditions is not so severe.
 - > Temperature
 - > Energy
 - > Plant mass

