月面環境計測

岩手大学 河内正治,田口長英,船崎健一

NAO水沢 鶴田誠逸, 田澤誠一, 花田英夫

総合研究大学院大学 河野祐介

NASDA 横山隆明, 金森洋史

ILOM研究グループ

SELENE-Bシンポジウム 2001年7月17日 宇宙研

背景

将来の月探査計画(SELENE-2) として月面に光学望遠鏡を設置 する計画を検討している。

月面の激しい温度環境は、光学望遠鏡の 精度を低下させる?

月土壌

月面上の足跡の写真

レゴリス上のランダーは、時間の経過に伴って傾斜する?

レゴリスダスト

着陸時の噴射によるダストの発生

静電気によるダストの発生

静電浮遊ダスト

日の出直前、日の入り直後に太陽の方向の月の地平線に光り輝〈Horizon-Glowが宇宙飛行士によって観測されている。これはレゴリスダストが静電的に浮遊していると考えられている。

Zook, H. A.; Mccoy, J. E. (1991) "Large Scale Lunar Horizon Glow and a High altitude Lunar Dust Exosphere", Geophysical Research Letter, vol. 18, pp. 2117-2120

静電浮遊ダストの粒径と高さの関係

- •Silverberg, E.C. (1975) "Electrostatic dust transport and its consequences for the lunar ranging experiment", NASA-CR-142349
- •Criswell, D.R. (1972) "Horizon-Grow and The Motion of Lunar Dust", Photon and Particle Interactions with Surfaces in Space, pp. 545-556
- •McDonell,J.A.M.(1979) "Lunar Surface Grain Motion:Electrostatic Charging, Supercharging (electret effects) and Mechanical Bonding ",COSPAR Space Research XIX,pp.455-458
- •Zook,H.A.;Mccoy,J.E.(1991)"Large scale lunar horizon glow and a high altitude lunar dust exosphere ",Geophysical Research Letter,vol.18,pp.2117-2120
- •Murphy, D.L.; Hawley, J.G. (1993) "Lidar detection of levitated lunar dust", Proceedings of SPIE vol. 1936, pp. 182-190
- •Murphy,D.L.;Vondrak,R.R.(1993) "Effect of levitated dust on astronomical observations from the lunar surface ",24th Lunar and Planetary Science Conference,pp.1033-1034

光の透過率とダスト堆積量の関係

Katzan, C.M.; Brinker, D.J.; Kress, R. (1991) "The effects of lunar dust accumulation on the performance of photovoltaic arrays", NAS3-25266

Katzan, C.M.; Edwards, L.J. (1991) "Lunar Dust Transport and Potential Interactions With Power System Components", NASA Contract Report, NASA-CR-4404

キセノンランプとレゴリスシミュラントを用いた地上実験の結果

太陽電池の発電量とダスト堆積量の関係

Katzan, C.M.; Brinker, D.J.; Kress, R. (1991) "The effects of lunar dust accumulation on the performance of photovoltaic arrays", NAS3-25266

キセノンランプとレゴリスシミュラントを用いた地上実験の結果

ラジエータの排熱効率とダスト堆積量の関係

Katzan, C.M.; Edwards, L.J. (1991) "Lunar Dust Transport and Potential Interactions With Power System Components", NASA Contract Report, NASA-CR-4404

シミュレーションによる熱解析結果

ダストによる過去のトラブル例

・熱制御の不具合

カメラ回路のオーバーヒート(アポロ15) 宇宙船検出器の機器温度上昇,実験中止(アポロ16) ローバーのバッテリ温度上昇(アポロ16) Surface Electrical Properties実験のラジエータ温度上昇(アポロ17)

・ 機構部侵入による不具合

カメラフィルム送りの不具合(アポロ15) カメラフィルタ取り付け部の不具合(アポロ15)

・ その他

ダスト付着による汚染(全ミッション)
Cold Cathode Gauge実験の電力供給の遮断(アポロ12)
カメラレンズの頻繁な掃除(アポロ15)
ローバーのリアフェンダ破損(アポロ16)

年間に移動する月土壌の推定量

 3×10^{-2} g/(cm²·year)

Criswell, D.R. (1972) "Horizon-Grow and The Motion of Lunar Dust", Photon and Particle Interactions with Surfaces in Space, pp. 545-556

 4×10^{-5} g/(cm².year)

McCoy, J.E. (1976) "Photometric studies of light scattering above the lunar terminator from Apollo solar corona photography", Lunar Science Conference, 7th, 1976, pp. 1087-1112

 5×10^{-8} g/(cm²·year)

Silverberg, E.C. (1975) "Electrostatic dust transport and its consequences for the lunar ranging experiment", NASA-CR-142349

解析によって大きなばらつきがあり、信頼性にかける。

一日のうち、どの時期に、どのくらいの量のダストが堆積するかは、月面上で確かめられた事は過去にない。

本ミッションの目的

- 1. 着陸時舞い上がリダストの堆積度の定量的計測
- 2. 静電浮遊ダストの堆積量の計測
- 3. ダストの帯電極性の計測
- 4. 電気集塵装置を用いた堆積防止装置の動作試験
- 5. 着陸船内部や外部の温度計測
- 6. 着陸船の傾斜度の計測

着陸船の温度計測

月面の激しい温度環境に対する光学望遠鏡 の精度の維持させるため、設計にはランダー 内部や外部の温度を知る必要がある。

サーミスター 合計16個

- ○内部(上面,側面,底面) 6個
- ●外部(上面,側面,底面) 6個
- ●着陸脚下部

4個

Thermox Thermistor Sensor TX-104-GB (Lake Shore Cryotronics, Inc.)
0.076mm × 7.9mm long, 7.8mg

着陸船の傾斜計測

レゴリスに着陸脚が埋まり、長期の天文観測に影響を与える。

900 Series Biaxial Clinometers (Applied Geomechanics社製) Model 900-45 ±50° 15g 50.8mm × 50.8mm

ダストの堆積率の計測

電気的方法—ダストの堆積部分(観測ポート)に〈し型電極を配置し、電極間 の電気容量の時間依存性を計測する。ダストの堆積量の変化を 定性的に計測する。

光学的方法-1.CCDカメラで堆積ダストを直接観測し、マクロな視野でダストの 堆積状況を観測する。

2. CCD顕微鏡によって、堆積したダストを直接観測し、ミクロな視野で堆積量や粒子サイズを定量的に見積もる。

堆積防止装置—電荷を帯びたダストを電場を利用して、ダストの堆積を防止する。なお、電場を利用したDust問題の回避については、次の論文でも提案されている。 Doe, S.; Burns, O. J.; Pettit, D.; Blacic, J.; Keaton, W. P. (1994) "The Levitation of Lunar Dust via Electristatic Forces", Space 94, pp.907-915

装置の概略図

CCDカメラ

CCD顕微鏡

観測ポート蓋

Port1. 噴射によるダストの堆積状況の観測

Port2. マイナスに帯電した微粒子の堆積防止

高電圧印加 ポート壁:200V, ポート底:-200V

Port3. 電気的に中性な微粒子の堆積状況の観測

高電圧印加なし

Port4. プラスに帯電した微粒子の堆積防止

高電圧印加 ポート壁: -200V, ポート底: 200V

CCD顕微鏡と回転試料ステージ

顕微鏡

装置リスト

装置名称	型式	寸度(mm) 幅X×奥行Y×高さZ	重量 (g)	電力 (VA)	数	合計 重量 (g)	合計 電力 (VA)
ダスト観測装置本体(CFRP)		120 × 100	200	0	1	200	0
5角錘反射鏡(石英ガラス)		30 × 15	9.1	0	1	9.1	0
Thermistor Sensor (Lake Shore Cryotronics, Inc.)	TX-104-GB	0.076 × 7.9	0.0078	<10 ⁻⁶	16	0.125	<10 ⁻⁵
Biaxial Clinometers (Applied Geomechanics, Inc.)	Model 900- 45	51 × 51 × 17	15	8mA 12V	1	15	0.096
CCDカメラヘッド(東芝) CCDカメラ制御器	IK-M40	20 × 50 100 × 150 × 80	60 1000	10	1	1060	10
CCD素子 顕微鏡本体: (メレスグリオ社) 対物レンズ(×40) 接眼レンズ(×20)	04TCF002 04OAS016 04EFF006	20 × 10 50 × 153 23 × 20 23 × 20	10 200 50 50	1	1 1 1	310	2
試料ステージ(CFRP)		110 × 2	40	0	1	40	0
計測用エレクトロニクス		30 × 20	100	1	1	100	1
ステッピングモータ		45 × 15	100	0.16A 12V	1	100	1.92

<u> 装置総重量 1834g</u>

総合計電力 15W

本ミッションの必要性

■ 技術的意義

- 1. レゴリス環境の調査は、今後、トラブルなしに光学系、駆動系、太陽電池やラジエータを月面上で利用するために必要不可欠である。
- 2. 堆積防止装置が有効に動作すれば、ダストに起因するトラブルを回避することができる。
- 3. ランダー内外の温度および傾斜度の計測も、今後のミッションの設計上、基本データとして取得すべきである。

■ 科学的意義

月面において堆積した浮遊ダストを観測し、これまで地上 実験やシミュレーションによって得られているデータ値の直 接的な検証を行うことができる。これらの知見からHorizon Glowのメカニズムの解明や、技術的なフィードバックによる 今後の月面開発へ貢献が期待できる。

■ 特徴

重量が小さい、低消費電力、シンプルな構造